
Revisiting Approximate Top-K Algorithms in IoT
Ruifan Yang, Zheng Zhou, Lewis Tseng

Boston College
{yangrk, zhoupt, lewis.tseng}@bc.edu

XXX
XXX

Abstract—

Keywords –

I. INTRODUCTION

Top-k queries have wide applications in a big data setting.
One of the simplest and easy-to-grasp application is election
which precisely capture the notion of “global” and “local”
counts of votes. In a large-scale election, each ballot box has
a local count of votes for each candidate (or item); however,
what we really care about is the global counts of votes, i.e.,
the aggregation of all the local votes. More precisely, a top-k
query should find the answer to the following question:

Which are the k globally most popular candidates?

This has many natural applications in large-scale big data
systems. For example, find most popular files in a peer-to-peer
file-sharing system (such as BitTorrent), identify potential DoS
(Denial-of-Service) attack, and produce ranking in multimedia
systems [8]. Due to its wide applications, efficient Top-k
mechanisms have been a hot research topic, e.g., [7], [4], [1],
[5], [12], [17], [3], [8].

In a large-scale network, e.g., sensor networks, Top-k
queries can be viewed as a special case of aggregation [9],
[11]. Typically, the query algorithms begin with the construc-
tion of a spanning tree, and then the aggregation tasks (such as
counting and summing) can be completed with O(log n) bits
per node by routing data over the spanning tree. Here, n is the
number of nodes in the network [14]. If n is too large, then
finding “exactly” k most popular items (or candidates) has a
prohibitively high communication cost. With a slight abuse of
terminology, we will use item and candidate interchangeably.

To reduce the cost, approximate queries (or aggregation)
mechanisms have been proposed, e.g., [13], [15], [14], [16],
which do not always output the k most popular items – instead,
some randomized tricks are used to reduce the communication
costs, and the approximate mechanisms provide a guarantee
(lower bound) on the amount of errors, i.e., approximation
bound. However, these mechanism still require O(k) commu-
nication bits per node.

In 2014, Deolalikar and Eshghi proposed a lightweight
mechanism, namely Lottery Algorithm, to find top k items
in an approximate fashion in distributed systems [6]. One
desirable feature of the Lottery Algorithm is that each node
only needs to communicate a constant number of bits. How-
ever, their algorithm has two limitations: (i) the output items

of the Lottery Algorithm may contain a very unpopular item,
i.e., no guarantee on the quality of final output is provided
in [6]; and (ii) the Lottery Algorithm does not work in sparse
communication networks, since the Lottery Algorithm may not
converge in its current specification.

In this paper, we first formally analyze the Lottery Algo-
rithm in [6], and address the two limitations by proposing
a modular algorithm. The first stage of the algorithm selects
a constant number of “popular” items in a similar fashion
of the Lottery Algorithm [6], and the second stage uses a
modular approach to output the Top-k items from the popular
items selected in the first stage. One salient feature of the
modular approach is that depending on the characteristics of
the data, we can plug in different existing Top-k algorithms
into the second stage to produce the output to obtain better
approximation bound. This is particularly beneficial if we have
some prior knowledge on the characteristics of the data, e.g.,
distribution of local counts of votes or communication graph.
Our approximate algorithm is also lightweight, works in sparse
networks and has better approximation bound.

II. PRELIMINARY

A. System Model

The system consists of n nodes, and the communication
network is modeled as a directed graph where nodes are able
to communicate directly and reliably with their neighbors. The
graph is assumed to be strongly connected so that effectively,
each pair of nodes is able to communicate with each other via
an appropriate routing mechanism.

The system is assumed to be an asynchronous message-
passing model [2], [10]. Roughly speaking, an event (such
as arrival of a message from an incoming neighbor) triggers
a state-transition at each node(such as local computation
or outgoing message transmission). Every node follows the
specification of the distributed algorithms, i.e., there is no
failure. The message may be delayed but every message will
eventually be delivered to the intended recipient.

B. Problem Definition

XXX
Ruifan’s text below

III. INTRODUCTION AND SETUP

Let {e1 · · · el} be a set of distinct items in a distributed
system, with unique IDs {id1 · · · idl}. Let A1 · · ·Ap be a
set of distinct attributes for each record. For every item ei,

the attribute Aj is a non-negative value. Denote the value of
attribute Aj of record ei by Aj(ei). Denote the sum of all
attributes of ei by Ni =

∑
j Aj(ei). Denote N =

∑
i Ni.

Without lost of generality, we assume each attribute rests in
a distinct peer. The goal is to find a lightweight algorithm to
find the k records whose sum of attributes is the highest. We
also want to find the theoretical average performance of our
algorithm.

IV. MODIFICATION OF LIGHTWTTOPK

A. The Algorithm

1) Multiply the frequency
For each Aj(ei), replace it by Aj(ei) − c where c ∈
(0, N

pl) is a constant. By doing this, we amplify the
relative value of Ni for those Ni > N

l , and decrease
the relative value of Ni for those Ni <

N
l .

2) Generating a list of random variables
In each peer Aj , generate a list of tickets of form 〈ID, r〉
where ID is a record ei, and r is a random variable
generated from Exp(Aj(ei)),.

3) Pruning the list
Each peer prunes the list of tickets they have generated.
Ticket whose random variable is above a threshold T are
discarded. T is known as the sampling threshold.

4) Merging list by minimum
Each peer exchanges the top L tickets of its pruned list
with each of its neighbors. L is known as the propagate
count. During the exchange, each peer keeps only the
minimum random variable. Notice after the exchange,
every peer have tickets with the same value , i.e. the
minimum random variable generated by the id.

5) Cropping the merged list
Each peer sort their merged list in descending order
of random variable value, and crops it to have only L
topmost records.

6) Running the algorithm multiple times and merging the
results.
Run previous algorithms s times. s is known as the run
count of the algorithm. At the end of each run, a list
emerges. Obtain a final list according to the generated s
lists by counting the number of appearance of a record
in the s list. If a record occurs in at lest m out of c
lists, the it is included in the final output. m is called
the merge threshold.

Parameter Description
A j(e i) The value of attribute Aj of record ei
N i The sum of all attributes of record ei

Sampling threshold (T) Threshold for sampling in the second phase immediately following ticket generation,
which also defines the sampling ratio

Propagate count (L) Number of tickets each agent passes
Cycle count (c) Number of cycles of ticket exchange;
Run count (s) Number of runs of the algorithm

Merge threshold (m) Number of runs in which a record must have appeared as Top-k for it to be included
in final Top-k

Table: Notations and parameters of the algorithm

Theorem 1. By replacing each Aj(ei) by Aj(ei) − c where
c ∈ (0, N

mn), we amplify the relative value of Ni for those
Ni > N

n , and decrease the relative value of Ni for those
Ni <

N
n . Furthermore, the higher the original Ni, the higher

the amplification effect.

Proof. We prove the case for Ni > N
n . Since Ni > N

n , we
have

N < Ni · n
cN < cn ·Ni

−cN > −cn ·Ni

Ni ·N − cN > Ni ·N − cn ·Ni

N · (Ni − c) > Ni · (N − cn)

Ni − c∑n
i=1 Ni − c

=
Ni − c

N − cn
>

Ni

N

which means Ni

N has increased after the amplification.
Furthermore, let Ni, Nj be the sum of attributes of ei, ej , then
since 0 < c < N

mn , we have

Ni > Nj

c

Ni
<

c

Nj

1− c

Ni
> 1− c

Nj

Ni − c

Ni
>

Nj − c

Nj

(Ni − c) ·N
(N − cl) ·Ni

>
(Nj − c) ·N
(N − cl) ·Nj

Ni − c

N − cl
· N
Ni

>
Nj − c

N − cl
· N
Nj

Ni−c
N−cl
Ni

N

>

Nj−c
N−cl
Nj

N

which is the desired inequality.

B. Experiments

We generate nine datasets from Zipfian distribution by
varying the following two parameter:

1) Number of items:[700, 1500, 5000]
2) The skewness of the distribution: [1, 1.5, 2]

In our experiments, we fixed N = L = c = 5.We then
experimented with nine different settings of (s,m) pairs on
each of these nine datasets. Each experiment was repeated 20
times. Finally, the average precision, recall, and list length was
computed across the 20 runs for each parameter setting.

C. Results

Here we illustrate the result for one of the datasets. The
following graph showed the precision and list length of
the dataset of 700 items and 1.5 skewness. We compared
the results of our algorithm with the original LightWtTopk
algorithm.

Fig. 1: Comparison of list length

Fig. 2: Comparison of precision

V. MODIFICATION OF FAGIN ALGORITHM AND THE
THRESHOLD ALGORITHM

Note that in this section, we introduce faulty nodes into
our distributed system. The system may has at most f faulty
nodes, which may not report the correct value of the attribute
in this peer. Under such system, we introduced the definition
of a safe algorithm.

Definition 1. An algorithm is safe if the algorithm will never
output an item with no attribute in non-faulty nodes.

A. Algorithms
Modification of Fagin Algorithm
1) Do sorted access in parallel to each of the m sorted lists

Li. Stop when there are at least k ”matches”, that is,
each of them have been seen in all the lists.

2) For each object R that has been seen: Retrieve all of its
fields x1, ..., xm by random access. Compute F (R) =
F (x1, ..., xm). Set F (x1, ..., xm) = 0 if at least f of the
fields are 0.

3) Return the top k answers.

Modification of Threshold Algorithm In this section, we
consider the

1) Do sorted access in parallel to each of the m sorted lists
Li. As each item is seen under sorted access: Retrieve
all of its fields x1, ..., xm by random access. Compute
F (R) = F (x1, ..., xm). Again, set F (x1, ..., xm) = 0 if
at least f of the fields are 0. If this is one of the top k
answers so far, remember it.

2) For each list Li, let x̂i be the value of the last object
seen under sorted access.

3) Define the threshold value t to be F (x̂1, x̂2, · · · , x̂m)
4) When k objects have been seen whose grade is at least

t, then stop and return the top k answers.

Lemma 1. The TA always stops at least as early as FA.

Proof. In Fagin Algorithm, we’ve seen at least k matches [7],
which all have higher grades than the threshold in the TA.

Again, we see both algorithm will have the same output but
the modification of Threshold Algorithm will always be faster
asymptotically [7]. Hence in the following context, we only
refer to the modification of the Threshold Algorithm.

Theorem 2. If the aggregate function is monotone, then the
algorithm find the top k safe answer.

Proof. Fagin proved that the Threshold Algorithm output
the exact top k items under a fault-free system [7]. Our
modification exclude the items that may cause the algorithm
to be unsafe.

Theorem 3. This algorithm has the best accuracy over all
safe algorithm.

Proof. Suppose there exists a safe algorithm A that achieves
better accuracy than our given algorithm in some situation.
Then, we know there exist item k with ≥ f 0 attributes with
a high sum. Consider another situation with the same data
distribution with all f nodes of k all being faulty. In this case,
algorithm A has an unsafe output, which is a contradiction.

B. Limitation

Under the realm of safe algorithms, the modification of the
Threshold Algorithm perform very well. However in some
case, all safe algorithms function badly. Consider the following
example with three peers and one faulty node.

A B C
item 1 0 0 1
item 2 0 1 0
item 3 1 0 0

In this case, our previous algorithm does not output any
potential candidate for the top items and hence has an accuracy
zero. Therefore, we propose some algorithms that allow the
occurrence of unsafe items.

VI. OTHER UNSAFE ALGORITHMS

A. Algorithms

Algorithm 1: In the beginning of the algorithm, we ran-
domly picked f peers and assume them to be faulty. Then run

the Threshold Algorithm.
Algorithm 2: Randomly pick one node to exclude from our
system for this round. Then, run the Threshold Algorithm to
find the top one item among the remaining peer, and add
it to the output. Then randomly pick another node. Run the
Threshold Algorithm for the remaining peers. Add the highest
ranking item that’s not in the output yet. Repeat until we have
k items.
Algorithm 3: We first find the median of each item over
all peers, and then give rank of each item according to their
median.

B. Experiments

We run the experiments on both uniformly distributed
datasets and Zipfian distributed datasets with 50 peers, 50
items and 5 faulty nodes. For each dataset, we consider the
following three faulty behaviors:

1) Zero: The faulty nodes set all the attributes in it to zero.
2) Uniform: The faulty nodes set all the attributes in it to a

random number between 0 and 10∗ the maximum value
of all attributes.

3) Large: The faulty nodes set all the attributes in it to a
random number between 5∗ and 10∗ the maximum value
of all attributes.

C. Result

For each three faulty behaviors, we ran all three algorithms
with different k ∈ [1, 3, 5, 7, 10, 15] (that is, different length of
output), and for each k, we generated 500 zipfian distributed
datasets with parameters 1.34/1.3/1.25 and 50 (items), and for
each items, we generated the value of each 50 peers using
multinomial distribution. Then, we ran the algorithms in the
500 datasets to calculate the average accuracy. Here we put the
result from zipfian distributed datasets with parameters 1.25
and 50 in Figures 3, 4, 5.

Fig. 3: Zipfian distributed dataset with zero faulty nodes

Fig. 4: Zipfian distributed dataset with uniform faulty nodes

Fig. 5: Zipfian distributed dataset with large faulty nodes

Fig. 6: Zipfian distributed dataset with zero faulty nodes and
first parameter 1.34

Fig. 7: Zipfian distributed dataset with zero faulty nodes and
first parameter 1.25

As we can observe from Figures 3, 4, 5, keeping zipfian
parameters and k constant, among the three faulty behaviors,
zero faulty behavior will decrease the accuracy the most.

We also observed that keeping k and faulty behavior the
same, as first parameter of zipfian approaches 1, the accuracy
of each 3 algorithms will increase. We reflect this observation
in Figures 6 and 7.

Fig. 8: Uniform distributed dataset with zero faulty nodes

Fig. 9: Uniform distributed dataset with uniform faulty nodes

Fig. 10: Uniform distributed dataset with large faulty nodes

We also ran our algorithms using uniform distributed
datasets. From Figures 8-10, we can observe that as k

increases, each algorithms will have better accuracy in
uniform distributed datasets.

D. Real-World Data Testing

Dataset: We use sensor data from Array of Things,
a networked urban sensor project. Under subsystem of
chemsense, we extract HRF values (short term for human
readable values) of pollutant concentration (CO, SO2,
ground-level O3, and NO2) in the unit of ppm from
Chicago complete daily data sets. We then calculate
the AQI using concentration data, the breakpoints table,
and linear interpolation equation from the EPA docu-
ment(https://archive.epa.gov/ttn/ozone/web/pdf/rg701.pdf).
According to US EPA, we set the highest AQI value between
the 4 pollutants to be the AQI of a particular hour (originally
a day).

Faulty behaviors: We take account of three faulty behaviors
in the sensor data sheet:

1) Negative: The sensor detects negative HRF value of pol-
lutant concentration which is out of the range between
the lower bound and upper bound of human readable
value (repeatability of the sensor value is ± 2%).

2) Large: Under unexpected circumstances, the sensor con-
tacts high concentration of pollutants and temporarily
detects a large HRF value which gets AQI ≥ 500, the
highest breakpoint in the table.

3) Unavailable: A sensor HRF value is marked to ‘NA‘,
indicating that it is unavailable. We select the data set
without ’NA’ values in our experiment.

Goal: Our unsafe algorithms can predict top 6 hours with
worst air quality in early mornings (from midnight to 6AM)
of Chicago from 10/12/2019 to 10/18/2019 with a high
accuracy. After we exclude all the negative values, we get the
correct top 6 hours shown in the graph below. All the AQIs
come from SO2, the contributing pollutant.

Fig. 11: Top 10 Hours with Worst Air Quality in Early
Morning from 10/12 to 10/18 in Chicago

Experiment: On 10 zipfian distributed data sets with 42
items (hours) and 48 peers(AQIs), we randomly pick five
sensors to have large faulty behavior. For each value of the
faulty sensor, we change the value to a random large AQI
value. Then, we run each of the three algorithms on each of
the 10 data sets and get the average of the accuracy from 10
data sets for each algorithm with top 1,3,and 6 choices. We
then repeat this process for random faulty behavior, that is,
either large or negative. Because of the presence of negative
nodes, the median is 0 at most cases. So we modify algorithm
3 and calculate the mean instead.

Result:

Fig. 12: Large Faulty behavior

Fig. 13: Random Faulty behaviors

Overall, our algorithms perform well. Large behaviors affect
the accuracy more. As a result, by processing real-world sensor
data with fault model in simulation, we prove fault-tolerance
properties of our unsafe algorithms.

REFERENCES

[1] D. Amagata, Y. Sasaki, T. Hara, and S. Nishio. Efficient processing of
top-k dominating queries in distributed environments. World Wide Web,
19(4):545–577, July 2016.

[2] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simu-
lations, and Advanced Topics. Wiley Series on Parallel and Distributed
Computing, 2004.

[3] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over
web-accessible databases. In Proceedings 18th International Conference
on Data Engineering, pages 369–380, 2002.

[4] P. Cao and Z. Wang. Efficient top-k query calculation in distributed
networks. In Proceedings of the Twenty-third Annual ACM Symposium
on Principles of Distributed Computing, PODC ’04, pages 206–215,
New York, NY, USA, 2004. ACM.

[5] W. K. Dedzoe, P. Lamarre, R. Akbarinia, and P. Valduriez. As-Soon-As-
Possible Top-k Query Processing in P2P Systems, pages 1–27. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[6] V. Deolalikar and K. Eshghi. Lightweight approximate top-k for
distributed settings. In 2014 IEEE International Conference on Big
Data (Big Data), pages 835–844, Oct 2014.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. In Proceedings of the Twentieth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS ’01,
pages 102–113, New York, NY, USA, 2001. ACM.

[8] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput.
Surv., 40(4):11:1–11:58, Oct. 2008.

[9] X. Y. Li, Y. Wang, and Y. Wang. Complexity of data collection, aggre-
gation, and selection for wireless sensor networks. IEEE Transactions
on Computers, 60(3):386–399, March 2011.

[10] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[11] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design

of an acquisitional query processor for sensor networks. In Proceedings
of the 2003 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’03, pages 491–502, New York, NY, USA, 2003.
ACM.

[12] S. Michel, P. Triantafillou, and G. Weikum. Klee: A framework
for distributed top-k query algorithms. In Proceedings of the 31st
International Conference on Very Large Data Bases, VLDB ’05, pages
637–648. VLDB Endowment, 2005.

[13] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis
diffusion for robust aggregation in sensor networks. In Proceedings
of the 2Nd International Conference on Embedded Networked Sensor
Systems, SenSys ’04, pages 250–262, New York, NY, USA, 2004. ACM.

[14] B. Patt-Shamir and A. Shafrir. Approximate top-k queries in sensor
networks. In Proceedings of the 13th International Conference on
Structural Information and Communication Complexity, SIROCCO’06,
pages 319–333, Berlin, Heidelberg, 2006. Springer-Verlag.

[15] B. Patt-Shamir and A. Shafrir. Approximate distributed top-k queries.
Distributed Computing, 21(1):1–22, Jun 2008.

[16] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with
probabilistic guarantees. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases - Volume 30, VLDB ’04, pages
648–659. VLDB Endowment, 2004.

[17] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tso-
tras, M. Vlachos, N. Koudas, and D. Srivastava. The threshold join
algorithm for top-k queries in distributed sensor networks. In Proceed-
ings of the 2Nd International Workshop on Data Management for Sensor
Networks, DMSN ’05, pages 61–66, New York, NY, USA, 2005. ACM.

